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Abstract

This paper provides a survey of grinding wheel topography models. Recent 1D, 2D, and 3D models are reviewed, and the important model

components for a state-of-the-art 3D topography model are identified. Future directions for topography modeling are recommended and,

based on this survey, a general modelling approach using grain size, shape, arrangement, and wheel dressing is proposed.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The modern grinding process of forming materials has

existed for over a millennium, stretching back to water-driven

stone wheels; however, as an engineered manufacturing

process, it was not until the mid-1940’s that grinding was

scientifically examined and fledgling mechanics were first

applied [1]. Much research in the past half-century has

significantly advanced the field, and grinding today is a vital

economic constituent in many industrialized countries.

Evidence of this can readily be seen by the proportion of

grinding machines in metalworking and fabrication plants in

the United States. In 1989 American Machinist [2] found that

in a survey of all the metalworking and metalworking-related

machine tools that just less than 25% of all tools were of the

grinding-type. Moreover, 13% were dedicated grinding

machines (excluding honing and lapping). Merchant’s

monograph [3] of the machining and grinding research in

the past sixty years estimated the annual direct labor and

overhead costs of metalworking operations at this time at,

conservatively, $136 billion. When compared to the 1989 US

GDP, dedicated grinding was an $18 billion industry.

Due to its economic importance, significant research

effort has been devoted to the optimization and
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enhancement of the grinding process. Numerical and

analytical modelling has proven to be an indispensable

tool in this venture. One key aspect of grinding that needs to

be addressed when modelling the grinding process is the

influence of the wheel surface condition (topography) on the

process. There are two main types of topography models:

empirical and physical. Empirical models use parameters

that are loosely based on physical processes and are

computed through statistical regression or optimization of

experimental data that generally require little computational

expense. Conversely, physical models use parameters that

are independent of the application (i.e. material constants,

etc.). The majority of models are of the empirical nature

which was a result of limited computational resources in the

past; however, the new emerging trend in current grinding

topology is the development of increasingly physical (or

mechanistic) models. Physical models are preferable since

more insight is needed into how the wheel surface condition

affects the grinding performance [1].

The last time a comprehensive survey of topography

models was published was in 1992 [4]. Since then

considerable advances have been made in this area. The

purpose of this paper is to report on specific recent models

developed since 1992 that have shown promising results as

well as to point to the future direction of grinding wheel

topology modeling. A brief description of topographic

models prior to 1992 has been included for historical

context and completeness. In addition, the basic com-

ponents of a state-of-the-art 3D topographic model are

identified and a general physical topography modelling

approach is presented.
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Nomenclature

A1,2,. Empirical constants

Agw Cutting edge shape constant for grinding wheel

Aint Grain-diamond dresser intersected area

a Depth of cut

b Width of cut

bdd Dressing diamond characteristic width

c1 Static cutting edge density per profile depth

c2 Static cutting edge density

c3 Static cutting edge density on bond level

Cgr Grain concentration

D Fractal dimension

dg Grain diameter
�dg Average grain diameter

deq Equivalent grain diameter

fdr Dressing feed

fs Survival fraction of dressed grains

Gijk Grain position vector

h 0 Fracture amplitude

M Grinding wheel mesh or grit number

m Empirical exponent

n Empirical exponent

Nkin Kinematic cutting edge areal density

Nst Static cutting edge areal density

P(x) Probability function

q Speed ratio

r1,2,. Empirical constants for cutting edge shape

rx
g; r

y
g; r

z
g Ellipsoidal axis radii

Sg Inter-grain spacing

Vg Grain volume fraction

Vcub
g Volume of grains in cubic cell arrangement

Vcub
cell Volume of simple cubic cell

v Wheel speed

x, y, z Wheel coordinate directions

xc
g; y

c
g; z

c
g Grain center location

zdm Diamond dresser profile height

zgr Grain height

zfr Grain fracture height

a Dressing effect parameter

â Fracture angle random number

g0 Variance

d̂ Grain spacing random number

z Damping factor

H Noise function

k Rake angle

L Total parsed profile length

l Scale length

sg Standard deviation of grain sizes

F(x) Normal distribution function

X Sample data

û Fracture frequency random number

un Natural frequency

D.A. Doman et al. / International Journal of Machine Tools & Manufacture 46 (2006) 343–352344
2. Topography models prior to 1992
2.1. One-dimensional topography models prior to 1992

Very early in the development of grinding modelling

research it was well-known that an accurate description of

the wheel surface topography was needed. Due to its

stochastic nature and experimental difficulties, however,

topography modelling was restricted 1D statistical wheel

characterizations such as surface roughness of wheels and

number of cutting edges. Tönshoff [4] cites Peklenik [5] as

the first theoretical study into the cutting actions of grains.

This research concluded that the number of cutting edges of

the grinding wheel is an inherent characteristic and that any

given grain may have multiple edges. Subsequently,

Verkerk [6] reported that adjacent cutting edges may be

considered a single cutting edge because they lack sufficient

chips clearance to act independently. This led to the

common-place distinction between ‘static’ and ‘kinematic’

grains. The static number of cutting edges is the sum of all

of the grains (one edge per), while the kinematic (or active)

number of cutting edges is the sum of only the grains that

take part in chip formation. This important realization that

not all grains participate in material removal set the path of
early topography modelling from the mid 1960’s until the

late 1980’s.

Tönshoff [4] produced a comprehensive survey of

topography models prevalent in European grinding research

up until 1992. At the time, the singular focus of these

models was the development of empirical formulae that

estimated the static and kinematic number of cutting edges

for a given wheel. As such, all of these models were of the

1D type, electing for stochastic rather than physical

representations of the topography. Four basic factors used

in early 1D topography models were identified. These

factors are the cutting edge shape (SF), speed ratio (SR),

depth of cut (DC), and grain size (GS). Thus, the basic form

of the kinematic cutting edge density is

Nkin Z SFð Þ SRð Þ DCð Þ GSð Þ: (1)

The static grain count density is a function of the

volumetric density (grains per unit volume), adjusted by the

height of the surface profile. This volumetric density of

cutting edges is typically quantified through experimental

measurement of the wheel profiles using various methods

such as profilometry or optical methods. Tönshoff [4]

provided a basic model for static and kinematic grain counts

that encompassed many others, namely
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Nst Z c1zA3 (2)

and

Nkin Z Agw

a

q2deq

 !A2=2

: (3)

The variable c1 is the volumetric static cutting edge

density, a is the depth of cut, deq is the equivalent grain

diameter, and q is the speed ratio. Table 1 shows the

configurations for each of the basic factors as well as the

static cutting edge formula for several models. Note how

each can be simplified into the basic model.
2.2. Two-dimensional topography models prior to 1992

Interestingly, in North America in the 1970’s topography

modelling departed from the estimations of static and

kinematic grain counts. Meyers [12] and Peklenik [13] used

autocorrelation theory to characterize the wheel using

profile derivatives and profile slopes, respectively, with

limited success. Later, researchers had better results

employing discrete time series modelling techniques that

used very few parameters. Of these models, McAdams [14]

used Markov Chain theory, Stralkowski et al. [15] used

autoregressive (AR) models, and DeVor and Wu [16]

employed autoregressive moving average (ARMA) tech-

niques to develop a discrete estimation of the topography.

Pandit and Wu [17] improved upon the early advanced

statistical modelling approaches of many other researchers

in an attempt to characterize the actual profile of the wheel

surface using very few parameters. The model, consisting of

a second order differential equation resembling a forced

damped vibration system, was fit to a measured profile using

regression principals. This system was then transformed

using Markov Chain theory into a continuous function [18]

d2X tð Þ

dt2
C2zun

dX tð Þ

dt
Cu

2
nX tð Þ Z H tð Þ; (4)

where X(t) is the sampled data, H(t) is a noise function, z is

the damping factor, and un is the natural frequency. The

model allows for any given profile to be characterized by

three parameters, damping and natural frequency. Good
Table 1

Cutting edge density factors for 1D models (after [4])

Model reference Shape factor (SF) Speed ratio factor (SR) D

(D

Kassen (1969) [7] ð1:51ðc2
2=kxÞÞ1=3 (1/q)1/3 a

Werner (1971) [8]
2A1

cm=n
1

r1

� �ðm=ðnC1ÞÞ (1/q)(m/nC1)
a

Lortz (1975) [9] A1 (1/q)m a

Treimel (1975) [10] ðA1ðNst=zmaxÞÞ (1/q)(1/nC1) a

Yegenoglu (1986) [11] ½2ð1=r1C1ÞA1ðr1 C

1=c3 Cr2Þ
ð1=r1C1Þ�

ð1=qÞð1=r1C1Þ a

Tönshoff (1992) [4] Agw ð1=qÞA2 a
results were obtained in the study, where each measured

profile was successfully fit to the model with these

parameters. Although Deutsch and Wu [19] provided a

phenomenological assessment of the model parameter-

wheel constituent relation, the model lacked direct

mechanical ties to the topography.
3. One dimensional topography models after 1992

The 1D construct used for topography models is, by

definition, incapable of providing topographical details of

the surface. Significant success from a process- and

machine-control perspective has been obtained by char-

acterizing the surface by a parameter, be it surface

roughness, number of active cutting edges [20], etc. Most

recently, fractal theory has been applied to wheel topology

[21] utilizing the fractal dimension and has produced some

promising results.

Fuzzy logic models, such as Ali and Zhang’s [22], have

recently been applied to grinding modelling with significant

success. These models provide the foundation for intelligent

control of grinding processes, and the reader is referred to

Rowe et al.’s [23] review for further applications. In this

survey, the model selection was restricted to those that take

a mechanistic viewpoint of the topography, rather than a

machine-control perspective. For this reason, fuzzy logic

modelling has been excluded.

3.1. Liao model

Fractal theory-based topography models have garnered

much attention in the grinding research community since

the inception of fractal theory by Mandelbrot [24]. Models

of this type attempt to characterize the wheel profile by a

single parameter which has significant implications for

machine-control applications. It has been shown that fractal

theory can describe engineering surfaces quite well and has

been applied to ground surface topographies [25,26]. Most

recently, Bigerelle et al. [27] have characterized the paper-

ground surfaces using a two-parameter fractal model with

good results. These models provide a concrete validation for

the application of fractal theory to grinding wheel topology.
epth of cut factor

C)

Grain size factor (GS) Static grain count (Nst)

1/6 (1/deq)1/6 c2z
ðm=2ðnC1ÞÞ ð1=deqÞ

ðm=2ðnC1ÞÞ c1zn

n (1/deq)n Ð z
0 c1dz

(1/2(nC1))
ð1=deqÞ

ð1=2ðnC1ÞÞ nz

ð1=2ðr1C1ÞÞ ð1=deqÞ
ð1=2ðr1C1ÞÞ c3z

ðA2 =2Þ ð1=deqÞ
ðA2 =2Þ c1zA3
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In essence, fractal theory measures the geometric self-

similarity, or the degree to which a particular pattern is

scaled and repeated in a structure. With regards to the

grinding wheel surface, this approach seems appropriate

since the abrasive grains are generally geometrically similar

and linear scales of one another.

Liao [21] developed a fractal characterization of

diamond grinding wheel topography which is encapsulated

by a single parameter, the fractal dimension D. This

parameter is determined by parsing measured wheel profiles

with various scale lengths l as shown in Fig. 1. As the scale

length increases, more of the profile detail is lost. A

logarithmic plot of the total profile length L versus the scale

length demonstrates fractal behavior if a linear relation with

a negative slope is found [21]. The fractal dimension is

defined as the slope of this logarithmic plot:
D Z 1 K
log Lð Þ

log lð Þ
: (5)
Measured profile
Parsed profile

scale
length

(a)

Measured profile
Parsed profile

scale
length

Measured profile
Parsed profile
Measured profile
Parsed profile
Measured profileMeasured profile
Parsed profileParsed profile

scale
length
scale
length

Measured profile
Parsed profile

scale
length

Measured profile
Parsed profile

scale
length

Measured profile
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Measured profile
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Measured profileMeasured profile
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scale
length
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length

(b)

Measured profile
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length

Measured profile
Parsed profile
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length

Measured profile
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Measured profile
Parsed profile
Measured profileMeasured profile
Parsed profileParsed profile

scale
length
scale
length

(c)

Fig. 1. Schematic of parsed grinding wheel profile with (a) fine, (b)

medium, and (c) coarse scale lengths.
It should be borne in mind that fractal theory remains a

1D treatment of grinding wheel topography, albeit with

more information. The fractal dimension does not explicitly

characterize the profile as a 2D or 3D model would, but acts

much like an average surface roughness. It does, however,

provide insight to the topographical relationships of the

abrasive grains and how similar to one another they are.

Fractal theory topography models appear to be an emerging

field and may provide interesting results in the future.
3.2. Hou and Komanduri model

Hou and Komanduri [20] developed a model using

stochastic approaches to approximate the grinding wheel

topography. The model attempts to determine the total

number of grains of a certain size within the wheel, rather

than a physical mapping of the surface.

The model assumes that grains of different sizes rest on

the nominal wheel surface, shown in Fig. 2, where the range

of grain sizes is related to the wheel marking. The grain size

listed on a wheel’s standard marking corresponds to the

sieve used to sift the grains prior to fabrication; however,

there is a range of possible grain sizes for a given wheel

[20]. For example, the opening on a standard #60 sieve is

0.255 mm, and a #54 sieve is 0.291 mm. When grains are

first sifted (sorted) for a 54-grit wheel, they are passed

through the #54 sieve first, which selects grains of

maximum diameter 0.291 mm. Next, these grains are passed

through the next finer sieve (#60). This eliminates any

grains smaller than 0.255 mm; therefore, the range of grain

size for a 54-grit wheel is 0.291–0.255 mm. By applying a

normal distribution F(x) over this range, as shown in Fig. 2,

the probability of encountering a grain of size dg may be

computed. The normal distribution F(x) is given by

FðxÞ Z
1ffiffiffiffiffiffi
2p

p exp K
1

2
x2

� �
; (6)

and the probability of a grain of size dg, is given by

PðxÞ Z
1ffiffiffiffiffiffi
2p

p exp K
1

2
x2

� �
dx: (7)

Classically, the distribution is represented as a function

of the non-dimensional x parameter. While it is possible to

redefine Eqs. (6) and (7) in terms of the grain size dg it is

convenient to simply define a linear transformation rule

x(dg). From Eq. (7) the probability of the total number of

grains being exactly of size dg is known. Using the grain

volume fraction Vg the total number of grains per unit area is

given as:

Nst Z
V2=3

g

�d2
g

: (8)

Using Eq. (8), the number of grains of size dg passing

through the grinding zone per second is



Fig. 2. Schematic of Hou and Komanduri model grain size distribution.
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_Nx
st Z P½xðdgÞ�ðvbNstÞ: (9)

The active number of cutting grains Nkin is computed by

defining a minimum grain diameter that will engage the

workpiece. This model does not incorporate dressing effects

but provides an excellent example of stochastic modelling

of grain sizes and the subsequent static and kinematic grain

counts.
4. Two dimensional topography models after 1992

models are a departure from the 1D kind in that the actual

shape of the grains is modelled geometrically rather than by

an empirical factor. By modelling grains geometrically, the

physical effects of dressing, grain location, and others may

be studied. The models proposed by Chen and Rowe [28]
Fig. 3. Grain distribution for a
and Koshy et al. [29] used a physical approach, whilst

Torrance and Badger’s [30] model employed a stochastic

approach.
4.1. Chen and Rowe model

Chen and Rowe [28] developed a topography model that

assumed uniform, spherical grains randomly arranged in

bond material, and that were subsequently dressed. A

representative section of the wheel is modeled by uniformly

arranging the grains in bond material, randomizing their

location, and subsequently performing a dressing operation.

Fig. 3 shows the initial uniform arrangement of grains using

a simple cubic (SC) unit cell. Each grain position Gijk has a

grain of size �dg which is the average grain size given as [31]

�dg Z 15:2 MK1; (10)
simple cubic unit cell.



Fig. 4. Schematic of the Chen and Rowe model approximation of the

grinding wheel topography.
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where M is the grit or mesh number of the wheel. The total

volume of grains in a cubic arrangement Vcub
g is

Vcub
g Z

1

6
p �d3

g; (11)

and the total volume of the unit cell is given by

Vcub
cell Z S3

g; (12)

where Sg is the inter-grain spacing. The packing density Vg

of the grains is, therefore, the ratio of these two volumes,

namely

Vg Z
Vcub

g

Vcub
cell

Z
p �d3

g

6S3
g

: (13)

Note that from Eq. (13), the maximum theoretical

packing density for a cubic arrangement occurs when the

grains are just touching, or �dgZSg, which results in a

packing density of 0.524. This packing density represents an

upper limit of the model since higher grain densities cannot

be arranged using cubic unit cells. It is interesting to note

that the maximum packing density according to the ANSI

B74.13-1982 wheel marking standard is 0.640, which

requires a body-centered cubic (BCC) cell structure [32].

To model the randomness of the actual grain locations in

the wheel, each grain position Gijk is shifted through a

randomizing translation

Gijk Z

Gx
000 C iSg C d̂x

G
y
000 C jSg C d̂y

Gz
000 CkSg C d̂z

2
664

3
775; (14)

where the indices i,j,kZ{1,2,K} represent the position

labels of the grain and d̂ is a random number between 0 and

Sg. Fig. 3 shows the rearranged grain structure after the

randomization translation was applied. The reader should

note that the linear translation of Eq. (14) is subject to the

constraint whereby no grain may intersect any other grain.

An important aspect of this model is that it recognizes the

importance of dressing effects that are known to play a vital

role in the performance and characteristics of grinding [31,

33]. Chen and Rowe [29] considered two main mechanisms

in dressing: ductile bond cutting and brittle fracture as

shown in Fig. 4. Chen and Rowe [28] assumed that due to

the random nature of the grains, material properties, and

wheel structure, the fractured surface should be irregular.

Thus, the model uses a contour shape defined by the

periodic function

zfrðxÞ Z zdmðxÞCh0½sinðûx C âÞC1�; (15)

where zdm is the dressing trace. The variable h 0 is the

fracture amplitude, û is the random fracture frequency, and

â is the random fracture angle. The random quantities in Eq.

(15) reflect the erratic nature of the fracture and ensure that

the contour does not conform to the profile of the diamond.
Chen and Rowe [28] also assumed that the size of the

fracture should be proportional to the area of intersection of

the dressing tool and the grain as shown in Fig. 5. Therefore,

the fracture amplitude was defined as

h0 Z
Aintbdd

4f dr
; (16)

where Aint is the intersected area of the diamond and grain

shown in Fig. 5.

4.2. Koshy et al. model

Koshy et al. [34] developed a 1D topography model for

diamond grinding wheels which statistically estimates the

average grain protrusion height that was subsequently

expanded into a 2D model [29]. The grain size was

represented by a normal distribution function, similar to

that of Hou and Komanduri’s [20] model, and has the form

PðdgÞ Z
A1

sg

ffiffiffiffiffiffi
2p

p exp K
1

8

dg K �dg

sg

� �2
" #

; (17)

where sg is the grain size standard deviation given by

sg Z
dmax

g Kdmin
g

6
; (18)

and A1 is an empirical constant. Using Eq. (17), the

probability of encountering a grain of size dg can be

calculated as can the average protrusion height. This 1D

model was subsequently extended to a multidimensional

treatment [30] using a framework similar to that of Chen



Fig. 5. Grain fracture contour generated by dressing (after [28]).
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and Rowe’s [28] model with the added advantages of

allowing grains to have different diameters. In the

multidimensional model the grains’ positions are random-

ized and each grain location Gijk satisfies the rule

distðGijk;GlmnÞR
d

ijk
g Cdlmn

g

2
; (19)

which ensures that any two grains Gijk and Glmn do not

intersect one another.

While this model is capable of producing 2D or 3D

topographies, it extracts the 1D quantities of protrusion

height, static number of cutting edges, inter-grain spacing,

and the exposed area of the grains. Although the effect of

dressing was not accounted for, it was one of the first multi-

dimensional models to incorporate a grain size range

treatment.
Fig. 6. Schematic of the Torrance and Badger model approximation of the

grinding wheel topography.
4.3. Torrance and Badger model

Torrance and Badger [30] developed a grinding wheel

topography model that incorporates not only stochastic

quantities but also dressing of the wheel surface. The basic

premise of the model is that uniform, spherical grains are

distributed randomly in the bond material as shown in

Fig. 6. Upon dressing the wheel surface, the topography is

assumed to take the form of a series of angled surfaces.

These surfaces, or slopes, are defined by many parameters

but are primarily the product of grain fracture.

The model assumes two predominant forms of fracture

occur: bond fracture [35] and grain fracture [31,36,37]. It

also accounts for local plastic deformation, or crushing, of

the grains. The model begins with the determination of the
number of grains per unit area on the wheel:

Nst Z
6Vg

p �d2
g

: (20)

The model computes the statistically-based fraction or

percentage of the grains that survive one dressing pass as



Fig. 7. Schematic of Hegeman model approximation of the grinding wheel

topography.
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fs Z
1

a
1 K

1

expðaÞ

� �
; (21)

where a is a quantity that incorporates the dressing

parameters and grain/bond fracture and deformation. The

quantity fs, in conjunction with the dressing trace, is used to

determine what fraction of the grains will be crushed and

fractured or dislodged. A crushed grain is assumed to have a

linear geometry with a slope of 0.2. Fractured grains are

assumed to have a slope of 0.6, and dislodged grains leave a

flat void (slope of 0).

Although the formulation represents a 2D profile of a

dressed wheel, it does not use this information directly.

Instead, a statistical average (rms) slope is used to

characterize the surface. Though a physical description of

the topography is not used, the model is one of the few

multi-dimensional models to assume a topography com-

posed of angled surfaces.
Table 2

Required wheel parameters for Hegeman model

Wheel parameter Symbol Experimental tech-

nique

Grain concentration Cgr Scanning electron

microscopy

Grain base radius rx
g Zr

y
g Confocal scanning

optical microscopy

Grain protrusion

height

rz
g Confocal scanning

optical microscopy
5. Three dimensional topography models

In the previous section the reader may have noted that the

initial structuring of the model (grain positioning, shape)

was, in fact, three-dimensional. What separates these

models from true 3D formulations is the end product. A

three-dimensional model is one where not only are the

grains considered as three-dimensional objects, but a 3D

surface is produced to estimate a measured topography. At

the time of this report, the model proposed by Hegeman [38]

was the only three-dimensional model that could be found in

the literature. This model approximates the grinding wheel

topography by a randomized arrangement of three dimen-

sional ellipsoidal grains as did Büttner [39].

Hegeman [38] noted that most grains tend to be

ellipsoidal in shape not spherical in shape as evidenced by

SEM photographs. In this model the ellipsoids size and

orientation can change. Grain rotation is accomplished by

varying the axis radii rg using stochastic distributions. The

grain shape function, in the wheel (global) coordinate

system, is

zgrðx; yÞ Z rz
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 K

x Kxc
g

rx
g

� �2

K
y Kyc

g

r
y
g

� �2
s

; (22)

where the grain center is located at (xc
g; y

c
g; z

c
gZ0). Eq. (22)

represents the smooth ellipsoid surface protruding from the

wheel surface zZ0.

In an effort to simulate the non-smooth surface of the

grain after dressing the model employs a randomizing

function that is a three dimensional generalization of the one

proposed by Chen and Rowe [28]. Hegeman [38] defines a

stochastic periodic function of the form

zfrðx; yÞ Z cosðûxx C âxÞCcosðûyy C âyÞ (23)

to simulate the effects of dressing, where ûx, âx, ûy and ây
are random numbers. This function adds small deviations to

the ellipsoid surface creating a ‘rough’ texture. Combining

Eqs. (22) and (23) yields the total grain shape after dressing:

zðx; yÞ Z
zfrðx; yÞ c x; y outside grain

zgrðx; yÞCzfrðx; yÞ c x; y inside grain
:

(
(24)

With Eq. (24), the dressed grain shape and surrounding

material can be modeled. For practical application, several

grains are assembled to form a surface topography by using

randomly sized unit cells as shown in Fig. 7.

Several wheel parameters (listed in Table 2) were

experimentally determined in order to define the unit cells

and grain axis radii. Hegeman used confocal microscopy to

characterize the grain shape [38]. This method varies the

focal length of an objective lens and measures changes in

reflected light intensity from a scanning optical microscope

and is able to resolve steep slopes and enhanced lateral field

width by approximately 20% [40], allowing for estimation

of the areal grain concentration Cgr.
6. A framework for a general 3D model

The physically-based grinding wheel topography models

reviewed in this work contain similar constructs and can be

summarized in a general modelling approach. Fig. 8 shows a

framework for a physically-based topography model. The

framework has two main components consisting of defining
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Fig. 8. General 3D physical topography modelling approach.
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the undressed topology followed by the application of

suitable dressing mechanics.

The undressed topology consists of the grain shape, size,

and position. Typically, grains shape and size is modeled as

spheres since it is the most convenient shape to use and will

be subsequently dressed to produce the cutting edges.

However, more complex shapes such as ellipsoids could be

used. Next a uniform arrangement of the grains within the

wheel is accomplished by assigning a grain location Gijk to

each site of a unit cell. Wheels with a nominal packing

density less than 50% can use the simple cubic cell structure

(see Fig. 3), while more dense wheels will require a body-

centered cubic or similar unit cell. The final undressed

topography is produced using a randomizing function or

algorithm to translate each grain location Gijk subject to the

constraint that grains cannot occupy the same space to

mimic the actual arrangement.

The dressing mechanics are a product of three major

mechanisms: grain fracture, ductile bond cutting, and grain

deformation. The ductile bond cutting is simply the dressing

point removing the bond material and leaving a trace of the

tool. The grain deformation and fracture are the primary

effects of dressing although grain fracture appears to have

the most prominent effect. Grain fracture should relate to the

severity of the dressing operation as well as the type of

abrasive material used.
7. Conclusions

Several recent grinding wheel topography models have

been discussed. The current 1D models attempt to
characterize the surface condition by a single parameter.

This type of model, while effective for process- and

machine-control applications, does not provide much

detailed information on of the surface condition. A recent

advance has been the use of fractal theory which has shown

promising results.

The 2D and 3D models reviewed represent a distinct

demarcation point in grinding wheel topology: modelling

with a physical perspective. These models consider the

effect of wheel structural components and dressing

mechanics on the final wheel topography. The application

of fundamental mechanical theory (such as grain fracture)

renders these models more useful and relevant to the

researcher.

A general model was presented (Fig. 8), which was the

accumulation of various components from the 2D and 3D

models surveyed. The major components identified were:

1. Abrasive grain shape and size

2. 3D, randomized grain arrangement

3. Dressing mechanics accounting for grain fracture and

deformation

4. 3D dressed wheel surface.

It appears from the literature that the grain arrangement

approach proposed by Chen and Rowe [28] has had much

success and relates well to the actual structure of the wheel.

The same may be said for the stochastic treatments of

the grain size. Though the distributions vary somewhat

in the models, the basic principals remain consistent;

however, the dressing mechanics, specifically grain

fracture, have not been addressed in a detailed fashion.
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Future modelling may be well-served to focus on the

introduction of brittle fracture mechanics, possibly in 3D, in

the dressing component. Appropriate modelling of the

ceramic fracture surface of the grain should incorporate

high-strain rate effects and damage accumulation. Signifi-

cant modelling advances in ceramic fracture have been

realized by Johnson and Holmquist [41] which may aid in

future grain fracture modelling.
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