上一题下一题
跳转到
 
 
  世界如此多姿,发展如此迅速,窥一斑未必还能知全豹。但正如万花筒一样,每一个管窥都色彩斑斓。  
 
 
  知识通道 | 学习首页 | 教师首页 | PK首页 | 知识创造首页 | 企业首页 | 登录
 
本文对应知识领域
气象学基本原理
作者:未知 申领版权
2010年09月28日 共有 1780 次访问 【添加到收藏夹】 【我要附加题目
受欢迎度:

    1.1气象学
    
    大部分天气发生在对流层内。大气层约 8英里(13公里)厚,直接位于地球表面之上,且包含着大气(按重量计)的90% 
    
    。对流层的状态变化迅速。因此,尽管技求有了进步,但现在两周以上的预报仍然是不可靠的。除了辐射(这可通过气象卫星进行观测),其 他产生和改变天气的过程不能直接测定,而必须根据大气变量的观测值进行计算。气象人员所测定的主要变量是温度、降水(雨或雪)、风、湿度、云、气压和空气 中污染物。 
    
    --------------------------------------------------------------------------------
    
    
    
    1.1.1气象学的发展
    
    气象学的发 在19世纪后期气球首次到达16公里的
    
    高度之前,气象观测人员只能主要依赖他们从地面所能得知的情况。这些资料中大多数是定性的。亚里斯多德的巨著“气象学”(成书于公元 前约350年)是那个时代的杰作。直到亚里斯多德死后2000年左右,即1593年前后伽利略发明温度表及1643年托里拆利发现气压表原理之后,才首次 进行了仪器测定并将记录保存了起来。历史最长的是在巴黎自1664年以来一直连续地记录的测值。美国最长的记录是它1779年以来在索至狄格州纽黑文市所 保存的记录。
    对来自不同地点的天气观测资料进行比较,得出了天气系统移动的概念。1743年在杰明·富兰克林使用邮件收集到天气报告去跟踪猛烈风 暴的路经。他发现虽然沿大西洋海岸的风是从东北方向吹来的,但许多风暴到达波士顿要比到这费城晚一些。观测台站网和19世纪初电报的发明使得天气体利益可 以根据广大地区同一时间取得的观测资料进行绘制。不久人们认识到了空气在顺时针向和反时针向的巨大旋涡中运动,它们覆盖着直径达500—I000英里 (805—1609公里)的圆形区域。在北半球这些旋局分别叫做反气旋和气旋,而在南半球它们是反方向旋转的。在纬度30到60度之间的地区,它们通常向 东运动,每天移动 
    500—1000英里(805—1609公里)并带着各自云系前进。
    9世纪的气象观测员获知反气旋区通常是天气晴好的地区,而在气旋区内则有狂风降水发生且温度变化迅速。对这些特征,挪威气象学家威尔海姆·皮叶克涅斯和他儿子雅各市曾作了相当精辟的描述。
    1920年他们发现温度变化及恶劣天气来临主要是与风剧烈变化的明显分界线(他们把这叫做“锋”)相联系的。沿气旋中心前的暖锋是来自热带地区的暖空气。在冷锋上这一暖气团则为极地来的冷空气新的爆发所取代。这一发现给预报员们提供了一个借以分析天气
    现象的模式。如果天气变化是符合某一逻辑推理的模式发生的,那末就可运用数学计算作出预报。
    大约在应叶克涅斯的气旋模式问世的前后,气象学进入了一个迅速发展的时期。为航空发展所促进,高层大气观测成了日常工作。飞机本身也提供了在越来越高的高度上测定气压、气温和湿度的工具。风则通过观测陆地台站施放的气球所经的路径来研究。二十世纪三
    十年代出现了无线电探空仪,这是一种可以吊在气象气球下在上升过程中发送压、温、湿资料的仪器。自四十年代雷达臻于完善以来,无线电探空气球一直通过无线电讯号进行跟踪,从而使得风的测定即使天空云层密布也可进行。
    第二次世界大战以来技术装备的发展扩大了人们对大气的认识。现在,气象情报是通过飞机、远洋船只、漂移浮标、系留浮标以及陆地台站来 收集的。雷达跟踪系统测定乱流、风速、空气污染以及大气成分。气象监测卫星持续贤视全球天气。使气象人员在新的天气系统刚形成时就能发现。计算机对所收集 到的资料作出评价并进行数学计算以推断未来几天或几周的天气状况。全球天气研究方面的国际合作已经大大增加了时效更长的预报的可能性.
    1.1.2天气过程
    技术装备的进展已使气象人员可对决定天气的各种过程进行比较精确的研究。现对这些研究中一些比较重要的课题讨论如下:辐射是能量以电磁波形式由 太阳输送到地球和大气及返回空间的过程。所有天气现象实质上都是由辐射过程所引起。入射的太阳能中约王分之二被地球表面和大气中的水汽和二氧化碳所吸收。 余下的三分之~则被地球、大气和云反射回空间去了。所造成的地球热收入由热损失特别是热通过水分蒸发过程(此过程需要耗费能量)的损失所抵销。
    地球获得的辐射能分布是不均匀的,地球向大气输送的能量也是如此。所有空气运动和天气系统从根本上来说都是由这种不均匀加热造成热由暖区流向冷区所引起的。尤应指出的是,在热带增收能量的同时,极地在冬季不断损失热量。极地地区的气候因巨大风系不断地
    把较暖空气向极地输送,把较冷空气向赤道输送而得到暖和。
    由于有了不同类型的气象卫星,可在全球范围内对太阳辐射及其效应进行观测。
    乱流运动(湍流)是把热量、水汽和其他物质输送给大气的随机的、小尺度的运动。乱流运动还在能量消散中起着重要作用,因为(借助于乱流)能量可从大尺度运动中转移到小尺度运动中去,再转变成热能,即热。
    当风速发生脉动以及当地表的加热产生浮力的时候,就要产生乱流。当风基本静息,而乱流被抑制,烟尘及其他污染物质就以烟雾形式滞留于地表附近。乱流运动还可把植物种子、病毒及其他有机体激活到整个对流层。
    乱流运动因其杂乱无章的特性最适宜于用统计方法进行分析。近地层大气乱流的计算机模拟被用来计算污染物质的扩散以及用来鉴别导致污染物过分集中的条件。
    云是水滴或冰晶的积聚物。水汽凝结发生于非常小的盐粒、尘埃或烟粒上。这些叫做凝结核,它们在大气中含量是十分丰富的。当空气处于接近百分之百的相对湿度时,即使温度远低于冻结点,小水滴也可形成。要达到雨滴的大小,这些云滴的直径必须增大达一百倍。
    冰晶可在冻结核上发展起来。这些冻结核来自某些土壤的尘位,也有可能来自陨石尘。由于冻结核数量远小于凝结核,所以水滴可在低达- 40 
    F(-40℃)的温度下存在而不冻结。这种状态叫做过冷却状态。如果冰晶进人过冷却云,这种云可能变成冰晶云。我们可以通过对大气引进人工核(如碘化银),使过冷却云变成冰晶云。
    冰晶与过冷却水滴相互作用影响了云中电荷。当在对流云中小水滴冻结时,就产生电。电荷分离,正电行上升到云顶部,负电荷下降到云底层。当其间电压足够大时,就出现闪电。
    1.1.3大气总环流
    天气以多种尺度出现。规模最大的空气运动称为总
    环流,包括引起日常天气变化的风系。这些风系又控制象雷暴这样的小尺度运动。大气中空气这种永不止息的环流引起某一特定年份出现的地球上温度、降水、风和云量的巨大差异。
    正如卡尔·古斯塔夫·罗斯贝在1940年所发现的,在温带由西向东的宽阔高空气流形成了一连串的‘长波’。之所以叫“长波”,是因为一个波的东 西向长度可以长达三千到五千英里(4826到8046公里)。长波数目,其移动速率及根幅都随时间而变化。它们在很大程度上左右着天气类型的变化。在这一 波状的西风气流中有一中心风带叫做急流,其速度每小时150到200英里(即每小时241到322公里人有时还要大些。沿着这一风带的轴通常出现最急剧的 天气变化。
    1.1.4科里奥利力
    流向极地的暖空气及流向赤道的冷空气(这些气流
    运动使地球上热量分布得以平衡)是引起所有运动的推动力。然而为了理解大气总环流,我们还必须考虑地球的自转。风通常是根据在地球上静止的观测 者的观点来描述的。由于这一参考系,即地球是不断旋转的,所以在静止参考系中直线的运动,对地球上的观测者来说似乎变得弯曲了。这一效应叫做科里奥利力, 这是根据法国数学家加斯帕德·古斯塔夫.科里奥利而命名的。风遵循这一流型而吹:在北半球风向偏右,在南半球偏左。所以,地球自转产生西风、东风以及南 风、北风。
    大尺度的大气运动主要是因地球目转才存在的。尤其要指出,由于气压和科氏力相互作用而平衡,才使空气倾向于作匀速运动。这种受到平衡的风就叫做地转风。因此,空气基本上是沿压力等值线即多压线运动的。由于这一重要关系,所以对大气中气压分布的分析是气象工作的重要手段。

    

 

相关新闻

应用天气学基本原理
大气探测的历史
大气运动理论的发展
气象学

您可能对这些感兴趣  

中国从哪里来?
应用天气学基本原理
大气探测的历史
大气运动理论的发展
气象学
强化海洋环境管理 保护海洋环境
中国首次在南极履行环境管理保护义务

题目筛选器
日期:
类型:
状态:
得分: <=
分类:
作者:
职业:
关键字:
搜索

 
 
 
  焦点事件
 
  知识体系
 
  职业列表
 
 
  最热文章
 
 
  最多引用文章
 
 
  最新文章
 
 
 
 
网站介绍 | 广告服务 | 招聘信息 | 保护隐私权 | 免责条款 | 法律顾问 | 意见反馈
版权所有 不得转载
沪ICP备 10203777 号 联系电话:021-54428255
  帮助提示    
《我的太学》是一种全新的应用,您在操作中遇到疑问或者问题,请拨打电话13564659895,15921448526。
《我的太学》