第三单元 万有引力定律 人造卫星
一. 地心说和日心说
1、地心说的内容:地球是宇宙中心,其他星球围绕地球做匀速圆周运动,地球不动。
2、日心说的内容:太阳是宇宙的中心,其他行星围绕地球匀速圆周运动,太阳不动。
日心说是波兰科学家天文学家哥白尼创立的
二.开普勒三定律以及三定律出现的过程:
(1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
(2)任何一个行星与太阳的连线在相等的时间内扫过的面积相等。
(3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
即R3 / T2=k
最早由开普勒证实了天体不是在做匀速圆周运动。他是在研究丹麦天文学家第谷的资料时产生的研究动机。
*开普勒是哪个国家的:德国
三.牛顿的万有引力定律
1.内容:自然界任何两个物体之间都存在着相互作用的引力,两物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.
表达式:F=G
其中G=6.67×10-11 N·m2/kg2,叫万有引力常量,卡文迪许在实验室用扭秤装置,测出了引力常量.(英)卡文迪许扭秤 “能称出地球质量的人”
(小球直径2英寸,大球直径12英寸)
2.适用条件:①公式适用于质点间的相互作用,②当两个物体间的距离远大于物体本身的大小时,物体可视为质点. ③均匀球体可视为质点,r为两球心间的距离.
3.万有引力遵守牛顿第三定律,即它们之间的引力总是大小相等、方向相反.
四.用开普勒第三定律、向心力、牛顿第三定律推导牛顿的万有引力定律:
五.用万有引力定律推导开普勒第三定律:
六、用万有引力定律分析天体的运动
1.基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供,即
=====
2.估算天体的质量和密度
① “T 、 r”法
由G=m得:M=.即只要测出环绕星体M运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量.
由ρ=,V=πR3得:ρ=.R为中心天体的星体半径
当r=R时,即卫星绕天体M表面运行时,ρ=,由此可以测量天体的密度.
②“g、R”法
【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它的自转周期为T=s。问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。计算时星体可视为均匀球体。(引力常数G=6.6710m/kg.s)
解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。
设中子星的密度为,质量为M ,半径为R,自转角速度为,位于赤道处的小物块质量为m,则有
由以上各式得,代入数据解得:。
3.卫星的绕行速度、角速度、周期与半径的关系
(1)由G得:v=. 即轨道半径越大,绕行速度越小
(2)由G=mω2r得:ω= 即轨道半径越大,绕行角度越小
(3)由G=4π2得:T=2π 即轨道半径越大,绕行周期越大.
例2、如图所示,A、B两质点绕同一圆心按顺时针方向作匀速圆周运动,A的周期为T1,B的周期为T2,且T1<T2,在某时刻两质点相距最近,开始计时,问:(1)何时刻两质点相距又最近?(2)何时刻两质点相距又最远?
分析:选取B为参照物。
(1)AB相距最近,则A相对于B转了n转,其相对角度△Φ=2πn
相对角速度为ω相=ω1-ω2经过时间:
t=△Φ/ω相=2πn/ω1-ω2= (n=1、2、3…)
(2)AB相距最远,则A相对于B转了n-1/2转,
其相对角度△Φ=2π(n-)
经过时间:t=△Φ/ω相=(2n-1)T1T2/2(T2-T1)(n=1、2、3…)
4.三种宇宙速度
(1)第一宇宙速度(环绕速度):v1=7.9 km/s是人造地球卫星的最小发射速度,最大绕行速度.“飘”起来的速度
(2)第二宇宙速度(脱离速度):v2=11.2 km/s是物体挣脱地球的引力束缚需要的最小发射速度.
(3)第三宇宙速度(逃逸速度):v3=16.7 km/s是物体挣脱太阳的引力束缚需要的最小发射速度.
5.地球同步卫星
所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T=24h.要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h.(高度、运行方向、加速度、角速度、线速度大小相同,质量不同)
由G(R+h)得:h=km=5.6R
R表示地球半径
在同步卫星的实际发射中,大多数国家采取“变轨发射”,发射过程经历以下三个阶段:
①发射卫星到达200—300的圆形轨道上,围绕地球做圆周运动,这条轨道称为“停泊轨道”;
②当卫星穿过赤道平面点时,二级点火工作,使卫星沿一条较大的椭圆轨道运行,地球作为椭圆的焦点,当到达远地点时,恰为赤道上空处,这条轨道称为“转移轨道”,沿轨道和分别经过点时,加速度相同;
③当卫星到达远地点时,开动卫星发动机进入同步轨道,并调整运行姿态从而实现电磁通讯,这个轨道叫“静止轨道”。