上一题下一题
跳转到
 
 
  世界如此多姿,发展如此迅速,窥一斑未必还能知全豹。但正如万花筒一样,每一个管窥都色彩斑斓。  
 
 
  知识通道 | 学习首页 | 教师首页 | PK首页 | 知识创造首页 | 企业首页 | 登录
 
本文对应知识领域
CET6阅读训练82
作者:未知 申领版权
2010年11月23日 共有 1155 次访问 【添加到收藏夹】 【我要附加题目
受欢迎度:

    In the 1950s, the pioneers of artificial intelligence (AI) predicted that, by the end of this century, computers would be conversing with us at work and robots would be performing our housework. But as useful as computers are, they’re nowhere close to achieving anything remotely resembling these early aspirations for humanlike behavior. Never mind something as complex as conversation: the most powerful computers struggle to reliably recognize the shape of an object, the most elementary of tasks for a ten-month-old kid.
    A growing group of AI researchers think they know where the field went wrong. The problem, the scientists say, is that AI has been trying to separate the highest, most abstract levels of thought, like language and mathematics, and to duplicate them with logical, step-by-step programs. A new movement in AI, on the other hand, takes a closer look at the more roundabout way in which nature came up with intelligence. Many of these researchers study evolution and natural adaptation instead of formal logic and conventional computer programs. Rather than digital computers and transistors, some want to work with brain cells and proteins. The results of these early efforts are as promising as they are peculiar, and the new nature-based AI movement is slowly but surely moving to the forefront of the field.
    Imitating the brain’s neural(神经的)network is a huge step in the right direction, says computer scientist and biophysicist Michael Conrad, but it still misses an important aspect of natural intelligence. “People tend to treat the brain as if it were made up of color-coded transistors,” he explains, “but it’s not simply a clever network of switches. There are lots of important things going on inside the brain cells themselves.” Specifically, Conrad believes that many of the brain’s capabilities stem from the pattern-recognition proficiency of the individual molecules that make up each brain cell. The best way to build an artificially intelligent device, he claims, would be to build it around the same sort of molecular skills.
    Right now, the notion that conventional computers and software are fundamentally incapable of matching the processes that take place in the brain remains controversial. But if it proves true, then the efforts of Conrad and his fellow AI rebels could turn out to be the only game in town.
    26.   The author says that the powerful computers of today _______________.
    
    
    
    
    
    

 

相关新闻

testtest
上善制度的炼成
新时代呼唤管理理论创新——大卫�梯斯与动态能力理论
创业的不变逻辑
创新管理需要回答的5个问题
十一、弥离
十、转院
九、生机
八、传染
七、求血

您可能对这些感兴趣  

干货分享|10本最受国外孩子喜爱的英文词典——上
从孩子的表现看父母的缺点!请家长对号入座,看看你是哪一类?
20条制作PPT的视觉原则
培训简史:培训者必知的历史轨迹
广田丰管理培训生人才培养调查报告
第4讲 作为上司的职业经理
第3讲 作为同事的职业经理
第2讲 作为下属的职业经理
第1讲 培养经理人的管理素养
酒店前台新员工上岗培训计划

题目筛选器
日期:
类型:
状态:
得分: <=
分类:
作者:
职业:
关键字:
搜索

 
 
 
  焦点事件
 
  知识体系
 
  职业列表
 
 
  最热文章
 
 
  最多引用文章
 
 
  最新文章
 
 
 
 
网站介绍 | 广告服务 | 招聘信息 | 保护隐私权 | 免责条款 | 法律顾问 | 意见反馈
版权所有 不得转载
沪ICP备 10203777 号 联系电话:021-54428255
  帮助提示    
《我的太学》是一种全新的应用,您在操作中遇到疑问或者问题,请拨打电话13564659895,15921448526。
《我的太学》