【导读】感谢清华大学计算机系教授邓志东向新智元投稿,他在《人工智能前沿技术与产业发展趋势》报告中指出,深度学习是人工智能的最新突破,一定要和大数据结合起来,做数据驱动下的感知智能产品研发,认知智能是前沿研究,支撑人工智能应用的硬件引擎也很重要。邓志东认为,弱人工智能的产业发展正处于爆发期,大家可以开始做工程化的应用产品开发了,私有大数据和深度学习芯片是制胜的关键和法宝。
我报告的题目是《人工智能前沿技术与产业发展趋势》,主要涉及四个方面的内容:一个是深度学习——人工智能的最新突破;第二个是深度学习方法一定要和大数据结合起来,即大数据驱动下的感知智能产品研发;第三个是举一反三的认知智能前沿研究;最后一个是支撑人工智能应用的硬件引擎。
深度学习:人工智能的最新突破
我们首先来看一下深度学习这一人工智能的最新突破。刚好60年之前,人工智能有一个定义,即把人工智能视为研究与设计智能体,这个智能体要能感知环境,要能采取行动,并使自己成功的机会最大化。所以它包括三个方面的内容:一是感知,二是决策——决策也就是认知,三是行动。首先很明确,现在人工智能是通过学习,而不是编程来实现的。
人的大脑里面肯定没程序,我们一定是通过学习,来获得视、听觉的能力,还有记忆、推理、规划、决策、知识学习与思考等,这些认知能力也都是通过学习而非编程得到的。总之就是所谓的习而识之。
人工智能可以分类为感知智能、认知智能和创造性智能三种,这是我们的观点。感知智能,简单说就是对人的直觉(intuition)能力的模拟,这主要涉及人的视觉、听觉、触觉等,这属于感知部分。还有一部分是认知智能,即对人类深思熟虑行为的模拟,比如人的推理、规划、决策、知识学习。另外就是创造性智能,包括人的灵感和顿悟,这一块显然还没有开始这方面的研究。
人工智能是一个影响面极广的共性科学问题,同时也是一个战略性前沿技术。它的突破从2006年开始,可以说人工神经网络由此进入了第三次复兴。
1970年、2000年前后人工神经网络置身寒冬,在人工智能领域中是被边缘化的。2012年的时候因为和大数据结合,又考虑了GPU硬件加速这个计算引擎,所以真正取得了全球的瞩目。2013年开始,国际科技巨头高强度深度介入,这是人工神经网络前两次研究热潮中从没发生过的。
现在大家几乎天天都能看到各种人工智能的新闻,许多IT巨头都决心用人工智能重塑企业的产品线,实现企业产品结构的转型升级。未来2到5年,人工智能还将给我们这个世界带来更多深刻的改变和惊喜。
人工神经网络本身可看成是对生物神经系统的模拟或者近似。方法有两种,一个是对外部输入输出的模拟,一个是对内部机制的模拟。它的发展里程可归结为“三起两落”。最早于1943年就出现了MP模型,目前的大部分神经网络都还在使用这种人工神经元模型。1957年Rosenblatt提出了Perceptron(感知机),这是第一种人工神经网络,因此Rosenblatt也被称之为“人工神经网络之父”。所以说,人工神经网络至今只有59年历史,而人工智能是60年历程。
这后面还有一系列里程碑式的结果,比如20世纪80年代出现的掀起第二次人工神经网络研究热潮的Hopfield网络和BP网络。30年前,在20世纪80年代中后期、90年代初期,人工神经网络也如同现在一样,那个时候非常热,也有无限美好的憧憬。
当时各行各业都去做神经网络,不过与现在不太一样,都仅限于学术圈和研究机构,企业参与很少。后来发现这些神经网络并非想象那样,能力不行,做不了多少事情,因此神经网络研究一下又跌入严冬。
现在这一轮复兴,跨国企业,比如目前做得比较好的Google(DeepMind、Brain)、Facebook、微软、IBM Watson、Amazon、百度等,全都进来了。还有一个趋势比较明显,就是企业逐渐成为人工智能研究的第一梯队,产业与学术研究的距离不断缩短,国内外都这样,非常明显。我举一个例子,现在许多公认的顶级国际会议论文都出自于Google、Facebook、微软这样的跨国企业,而并非高校和政府科研机构。
除了企业以外,还有两大国际学术研究中心,一个是以Geoff Hinton教授为领军人物的加拿大多伦多大学,另一个是以Yann LeCun教授为领军人物的纽约大学。事实上,人工智能领域有一个以Hinton为首的人工神经网络学派,主要包括Hinton、LeCun和Bengio,是全球深度学习研究的三大灵魂人物。