第2单元 匀变速直线运动规律
匀变速直线运动公式
1.常用公式有以下四个
2.匀变速直线运动中几个常用的结论
①Δs=aT 2,即任意相邻相等时间内的位移之差相等。可以推广到sm-sn=(m-n)aT 2
②,某段时间的中间时刻的即时速度等于该段时间内的平均速度。
,某段位移的中间位置的即时速度公式(不等于该段位移内的平均速度)。
可以证明,无论匀加速还是匀减速,都有。
3.初速度为零(或末速度为零)的匀变速直线运动
做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为:
, , ,
4.初速为零的匀变速直线运动
①前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶……
②第1秒、第2秒、第3秒……内的位移之比为1∶3∶5∶……
③前1米、前2米、前3米……所用的时间之比为1∶∶∶……
④第1米、第2米、第3米……所用的时间之比为1∶∶()∶……
对末速为零的匀变速直线运动,可以相应的运用这些规律。
5.一种典型的运动
经常会遇到这样的问题:物体由静止开始先做匀加速直线运动,紧接着又做匀减速直线运动到静止。用右图描述该过程,可以得出以下结论:
① ②
6、解题方法指导:
解题步骤:
(1)确定研究对象。(2)明确物体作什么运动,并且画出运动示意图。(3)分析研究对象的运动过程及特点,合理选择公式,注意多个运动过程的联系。(4)确定正方向,列方程求解。(5)对结果进行讨论、验算。
解题方法:
(1)公式解析法:假设未知数,建立方程组。本章公式多,且相互联系,一题常有多种解法。要熟记每个公式的特点及相关物理量。
(2)图象法:如用v—t图可以求出某段时间的位移大小、可以比较vt/2与vS/2,以及追及问题。用s—t图可求出任意时间内的平均速度。
(3)比例法:用已知的讨论,用比例的性质求解。
(4)极值法:用二次函数配方求极值,追赶问题用得多。
(5)逆向思维法:如匀减速直线运动可视为反方向的匀加速直线运动来求解。
综合应用例析
【例1】在光滑的水平面上静止一物体,现以水平恒力甲推此物体,作用一段时间后换成相反方向的水平恒力乙推物体,当恒力乙作用时间与恒力甲的作用时间相同时,物体恰好回到原处,此时物体的速度为v2,若撤去恒力甲的瞬间物体的速度为v1,则v2∶v1=?
【解析】
,而, 得v2∶v1=2∶1
思考:在例1中,F1、F2大小之比为多少?(答案:1∶3)
【例2】一辆汽车沿平直公路从甲站开往乙站,起动加速度为2m/s2,加速行驶5秒,后匀速行驶2分钟,然后刹车,滑行50m,正好到达乙站,求汽车从甲站到乙站的平均速度?
解析:起动阶段行驶位移为:
s1= ……(1)
匀速行驶的速度为: v= at1 ……(2)
匀速行驶的位移为: s2 =vt2 ……(3)
刹车段的时间为: s3 = ……(4)
汽车从甲站到乙站的平均速度为:
=
【例3】一物体由斜面顶端由静止开始匀加速下滑,最初的3秒内的位移为s1,最后3秒内的位移为s2,若s2-s1=6米,s1∶s2=3∶7,求斜面的长度为多少?
解析:设斜面长为s,加速度为a,沿斜面下滑的总时间为t 。则:
斜面长: s = at2 …… ( 1)
前3秒内的位移:s1 = at12 ……(2)
后3秒内的位移: s2 =s -a (t-3)2 …… (3)
s2-s1=6 …… (4) s1∶s2 = 3∶7 …… (5)
解(1)—(5)得:a=1m/s2 t= 5s s=12 . 5m
【例4】物块以v0=4米/秒的速度滑上光滑的斜面,途经A、B两点,已知在A点时的速度是B点时的速度的2倍,由B点再经0.5秒物块滑到斜面顶点C速度变为零,A、B相距0.75米,求斜面的长度及物体由D运动到B的时间?
解析:物块匀减速直线运动。设A点速度为VA、B点速度VB,加速度为a,斜面长为S。
A到B: vB2 - vA2 =2asAB ……(1)
vA = 2vB … …(2)
B到C: 0=vB at0 ……..(3)
解(1)(2)(3)得:vB=1m/s a= -2m/s2
D到C 0 - v02=2as (4) s= 4m
从D运动到B的时间: D到B: vB =v0 at1 t1=1.5秒
D到C再回到B:t2 = t1 2t0=1.5 2´0.5=2.5(s)
【例5】一质点沿AD直线作匀加速直线运动,如图,测得它在AB、BC、CD三段的时间均为t,测得位移AC=L1,BD=L2,试求质点的加速度?
解:设AB=s1、BC=s2、CD=s3 则:
s2-s1=at2 s3-s2=at2
两式相加:s3-s1=2at2
由图可知:L2-L1=(s3 s2)-(s2 s1)=s3-s1 则:a =