第3单元 机械能守恒定律
一、机械能守恒定律
1、 条件
⑴在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。(和只受到重力不同)
⑵只有系统内的弹力做功,动能和弹性势能相互转化,机械能的总量保持不变。
(3) 其它力的总功为零,机械能守恒(举例:木块压缩弹簧)
2、对机械能守恒定律的理解:
①“守恒”是时时刻刻都相等。 ② “守恒”是“进出相等” ③要分清“谁”、“什么时候”守恒 ④、是否守恒与系统的选择有关 ⑤、⑴机械能守恒定律的研究对象一定是系统,至少包括地球在内。通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。另外小球的动能中所用的v,也是相对于地面的速度。
3、机械能守恒定律的各种表达形式
⑴初状态 = 末状态 ⑵ 增加量 = 减少量
用⑴时,需要规定重力势能的参考平面。用⑵时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。尤其是用ΔE增=ΔE减,只要把增加的机械能和减少的机械能都写出来,方程自然就列出来了。
4、解题步骤
⑴确定研究对象和研究过程。⑵判断机械能是否守恒。⑶选定一种表达式,列式求解。
5、动能定理与机械能守恒的联系
1、 动能定理适用于任何物体(质点),机械能守恒定律适用于系统
2、 动能定理没有条件,机械能守恒定理有条件限制
3、 动能定理有时可改写成守恒定律
二、机械能守恒定律的综合应用
例1、质量分别为2 m和3m的两个小球固定在一根直角尺的两端A、B,直角尺的顶点O处有光滑的固定转动轴。AO、BO的长分别为2L和L。开始时直角尺的AO部分处于水平位置而B在O的正下方。让该系统由静止开始自由转动,求:⑴当A到达最低点时,A小球的速度大小v;⑵ B球能上升的最大高度h;⑶开始转动后B球可能达到的最大速度vm。
解析:以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒。
⑴过程中A的重力势能减少, A、B的动能和B的重力势能增加,A的即时速度总是B的2倍。,解得
⑵B球不可能到达O的正上方,它到达最大高度时速度一定为零,设该位置比OA竖直位置向左偏了α角。2mgž2Lcosα=3mgžL(1 sinα),此式可化简为4cosα-3sinα=3,解得sin(53°-α)=sin37°,α=16°
⑶B球速度最大时就是系统动能最大时,而系统动能增大等于系统重力做的功WG。设OA从开始转过θ角时B球速度最大,
=2mgž2Lsinθ-3mgžL(1-cosθ)
=mgL(4sinθ 3cosθ-3)≤2mgžL,解得
例2、半径为的光滑半圆上有两个小球,质量分别为,由细线挂着,今由静止开始无初速度自由释放,求小球升至最高点时两球的速度?
解析:球沿半圆弧运动,绳长不变,两球通过的路程相等,上升的高度为;球下降的高度为;对于系统,由机械能守恒定律得: ;
例3、均匀铁链长为,平放在距离地面高为的光滑水平面上,其长度的悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度?
解:选取地面为零势能面: 得: